COMPETENCY BASED DYNAMIC CURRICULUM FOR

FIRST BHMS PROFESSIONAL COURSE

(Applicable from Batch 2022-2023 onwards for 5 years or until further notification by National Commission for Homoeopathy whichever is earlier)

(Human physiology & Biochemistry)

HOMOEOPATHY EDUCATION BOARD NATIONAL COMMISSION FOR HOMOEOPATHY MINISTRY OF AYUSH, GOVERNMENT OF INDIA

JAWAHAR LAL NEHRU BHARTIYA CHIKITSA AVUM HOMOEOPATHY ANUSANDHAN BHAVAN

No.61-65, Institutional Area, opp. 'D' block, Janak Puri, New Delhi-110 058

Course- Human physiology & Biochemistry

Course code: Hom UG - PB

INDEX

S.No	Description	Page No
1	Preamble	02
2	Program Outcomes (PO)	03
3	Course Outcome (CO)	04
4	Teaching Hours	05
5	Course Content	09
6	Teaching Learning Methods	15
7	Content Mapping (Competencies Table)	16
8	Practical Topics	69
9	Assessment	71
10	List of Recommended Books	75
11	List of Contributors	76

1. PREAMBLE

Physiology studies the functional organization of man at several levels like atom, chemical, cells, tissues, organ systems and the whole body to understand fundamental mechanisms that operate in a living organism. The underlying goal is to explain the operations in a living organism.

Besides satisfying a natural curiosity about how humans function, the study of physiology is of central importance in medicine and related health sciences, as it underpins advances in our understanding of disease and our ability to treat it more effectively. It is also important from psychological and philosophical viewpoints, helping us to understand the different systems. Homoeopathic Philosophy postulates the force animating every cell as the Vital Force which helps in homoeostasis. When it is deranged due to web of causes, disease develops.

Homoeopath must understand Man in a holistic way which would help him to deliver the therapeutic action for the purpose of bringing about a cure. Understanding the structural organisation i.e., Anatomy along with psychological organisation go hand in hand. Their interplay maintains health and delivers optimum function for healthy living and progressing towards higher purpose as per Hahnemannian guidelines. Hence physiology needs to be integrated horizontally with Anatomy, Materia Medica, Organon of Medicine, Psychology & Pharmacy as well as vertically with Pathology, Surgery, Obstetrics & Gynaecology, Community Medicine, Practice of Medicine & Repertory for better grasp of health, disease and process of cure.

Advances in biochemical processes have been occurring at an astonishing pace. The action of homoeopathic medicines does occur at sub-cellular levels. Hence an in-depth understanding and correlation of the processes in health and disease can open up a whole new way of understanding Homoeopathic drugs and their far-reaching effects.

2. PROGRAMME OUTCOMES:

At the end of the course of the undergraduate studies, the homoeopathic physician must

- 1) Develop the knowledge, skills, abilities and confidence as a primary care homoeopathic practitioner to attend to the health needs of the community in a holistic manner
- 2) Correctly assess and clinically diagnose common clinical conditions prevalent in the community from time to time
- 3) Identify and incorporate the socio-demographic, psychological, cultural, environmental & economic factors affecting health and disease in clinical work
- Recognize the scope and limitation of homoeopathy in order to apply Homoeopathic principles for curative, prophylactic, promotive, palliative, and rehabilitative primary health care for the benefit of the individual and community
- 5) Be willing and able to practice homoeopathy as per medical ethics and professionalism.
- 6) Discern the scope and relevance of other systems of medical practice for rational use of cross referrals and role of life saving measures to address clinical emergencies
- Develop the capacity for critical thinking, self reflection and a research orientation as required for developing evidence based homoeopathic practice.
- Develop an aptitude for lifelong learning to be able to meet the changing demands of clinical practice
- 9) Develop the necessary communication skills and enabling attitudes to work as a responsible team member in various healthcare settings and contribute towards the larger goals of national health policies such as school health, community health and environmental conservation.

3. Course Outcomes (COs):

At the end of the course the student will be able to:

- 1. Discuss the Homoeopathic concept of health in relation to integrated body structure and functions.
- 2. Explain the normal functioning of the human body at all levels of organization.
- 3. Relate the concept of homoeostasis with relevant ideas in Anatomy, Materia medica and Organon of Medicine at BHMS I level .
- 4. Elucidate the physiological aspects of normal growth and development with focus on evolution.
- 5. Correlate micro functions at cellular level with macro functions at organ-system level.
- 6. Use necessary communication skills required for history-taking of the patient & relating various clinical findings in the patient.
- 7. Perform experiments in haematology, clinical physiology & biochemistry as required for the study of physiological phenomena and for assessment of normal function.
- 8. Identify the normal values of haematology, clinical physiology & biochemistry.
- 9. Perform clinical physiological examination under supervision.
- 10. Correlate knowledge of Organon & Materia Medica with Physiology.
- 11. Explain the integrated responses of the organ systems of the body to physiological and pathological stresses.

4. TEACHING HOURS

Sr No.	Subject	Theoretical Lecture	Practical / Tutorial / Seminar / Clinical Posting
01	PHYSIOLOGY & BIOCHEMISTRY	325 hrs.	330 hrs.

Theory Wise Teaching Hours Distribution – 325 Hours

Sr. No	Paper-I	
	List of System	Teaching Hours
1	General Physiology	20
2	Bio Physics Science	15
3	Skin & The Integumentary System	15
4	Body fluids & Immune mechanism	35
5	Nerve Muscle physiology	15
6	Cardiovascular system	20
7	Respiratory and Environmental Physiology	25
8	Renal Physiology	20
	Total	165
Sr. No	Paper-II	
	List of System	Teaching Hours
1	Central Nervous System	35
2	Endocrinology	30
3	Reproduction	15
4	Special Senses	20
5	Digestion and Nutrition	35
6	Biochemistry	25
	Total	160

Physiology – Practical – lab work			
No	Practical	Demonstration / Performance	Number of Teaching Hours
HAE	MATOLOGY		0
1	Study of the Compound Microscope	Performance	05
2.	Collection of Blood Samples	Performance	05
3	Estimation of Haemoglobin Concentration	Performance	05
4	Determination of Haematocrit	Demonstration	05
5	Hemocytometry	Performance	05
6	Total RBC Count	Performance	10
7	Determination of RBC Indices	Demonstration	05
8	Total Leucocytes Count (TLC)	Performance	10
9	Preparation And Examination Of Blood Smear	Performance	10
10	Differential Leucocyte Count (DLC)	Performance	10
11	Absolute Eosinophil Count	Demonstration	05
12	Determination of Erythrocyte Sedimentation Rate	Demonstration	05
13	Determination of Blood Groups	Performance	05
14	Determination of Bleeding Time and Coagulation Time	Performance	05
BIO	CHEMISTRY		
1	Demonstration of Uses Of Instruments Or Equipment	Demonstration	05
2	Qualitative Analysis of Carbohydrates, Proteins And Lipids	Performance	10
3	Normal Characteristics of Urine	Performance	04
4	Abnormal Constituents of Urine	Performance	10
5	Quantitative Estimation of Glucose, Total Proteins, Uric Acid in Blood	Performance	05
6	Liver Function Tests	Demonstration	04
7	Kidney Function Tests	Demonstration	04
8	Lipid Profile	Demonstration	04
9	Interpretation and Discussion of Results of Biochemical Tests	Demonstration	04
	Total		140

Practical / Clinical Physiology / OPD Wise Teaching Hours Distribution – 330 Hours

CLIN	IICAL PHYSIOLOGY		
1	Case Taking & Approach to pt	Performance	05
2	General Concept Of Examination	Performance	10
3	Examination of muscles, joints,	Performance	10
4	Cardio-Vascular System – Blood Pressure Recording, Radial Pulse, ECG, Clinical Examination	Performance	15
5	Nervous System- Clinical Examination	Performance	15
6	Respiratory System- Clinical Examination, Spirometry, Stethography	Performance	15
7	Special Senses- Clinical Examination	Performance	15
8	Reproductive System- Diagnosis of Pregnancy	Performance	05
9	Gastrointestinal System- Clinical Examination	Performance	10
	Total		100
OPE	– APPLIED PHYSIOLOGY		
1	OPD (Applied Physiology)	Demonstration	90
		& Performance	
	TOTAL		90

Semester Wise Distribution of Theory, Practical, Clinical Physiology & OPDs

Sr. No	Theory, Practical, Clinical Physiology & OPDs		
	SEMESTER - 1		
Module 1.	Theory :		
Organization of the human body	General physiology		
	Bio Physics Science		
	Skin & The integumentary System		
	Clinical Physiology :		
	Case Taking & Approach to Patient		
	General concept of examination.		
Module 2	Theory :		
Principals of Support System &	Body Fluid & Immune Mechanism		
Movements with transportation	Nerve Muscles Physiology		

	Practical :	
	Study of the Compound Microscope	
	Collection of Blood Samples	
	Estimation of Haemoglobin Concentration	
	Determination of Haematocrit	
	Haemocytometry	
	Total RBC Count	
	Determination of RBC Indices	
	Total Leucocytes Count (TLC)	
	Preparation And Examination Of Blood Smear	
	Differential Leucocyte Count (DLC)	
	Absolute Eosinophil Count	
	Determination of Erythrocyte Sedimentation Rate	
	Determination of Blood Groups	
	 Determination of Bleeding Time and Coagulation Time 	
	Clinical Physiology :	
	Examination of muscles, joints,	
4 th Month – 5 days PA	·	
6^{th} Month – 10 days TT – including Viva V	oce	
	SEMESTER – 2	
Module 3.	Theory :	
Vital Maintenance of the human body	Cardiovascular System	
	Respiratory & Environmental Physiology	
	Clinical Physiology :-	
	Cardio-Vascular System – Blood Pressure Recording, Radial Pulse, ECG, Clinical	
	Examination	
	Respiratory System- Clinical Examination, Spirometry, Stethography	

Module 4.	Theory :		
Control system of the human body with	Central Nervous System		
continuity	Endocrinology		
	Clinical Physiology :		
	Nervous System- Clinical Examination		
	Special Senses- Clinical Examination		
	Reproductive System – Diagnosis of pregnancy		
	• OPD		
9 th Month – 5 days PA			
12 th Month – 10 days TT – including Viva V	/oce		
	SEMESTER - 3		
Module 5.	Theory :		
Energy maintenance of human body	Reproductive System		
	Special Senses		
	Digestion System & Nutrition		
	Renal Physiology		
	Bio-Chemistry		
	Practical : -		
	Demonstration of Uses Of Instruments Or Equipment		
	Qualitative Analysis of Carbohydrates, Proteins And Lipids		
	Normal Characteristics of Urine		
	Abnormal Constituents of Urine		
	Quantitative Estimation of Glucose, Total Proteins, Uric Acid in Blood		
Liver Function Tests			
Kidney Function Tests			
	Lipid Profile		
	 Interpretation and Discussion of Results of Biochemical Tests 		
	Clinical Physiology :-		
	S64. 1. 1900051 .		

	Gastrointestinal System- Clinical Examination	
	• OPD	
14 th Month – 5 days PA		
18 th Month – 12 days TT – ir	18 th Month – 12 days TT – including Viva Voce – University exam	

5. COURSE CONTENT

- 1. The purpose of a course in physiology is to enable the students to learn the functions, processes and inter-relationship of the different organs and systems of the normal disturbance in disease so that the student is familiar with normal standards of reference while diagnosing deviations from the normal, and while treating the patients.
- 2. There can be no symptoms of disease without vital force animating the human organism and it is primarily the vital force which is maintaining state of health
- 3. Physiology shall be taught from the stand point of describing physical processes underlying them in health;
- 4. Applied aspect of every system including the organs is to be stressed upon while teaching the subject.
- 5. Correlation with Organon and philosophy especially the concept of health and its derangement the interplay of different cell, tissue organ and system, their representation in repertory and integration in HMM
- 6. There should be close co-operation between the various departments while teaching the different systems;

- 7. There should be joint courses between the two departments of anatomy and physiology so that there is maximum co-ordination in the teaching of these subjects;
- 8. Seminars should be arranged periodically and lecturers of anatomy, physiology and bio-chemistry should bring home the point to the students that the integrated approach is more meaningful.

THEORY:-

1. GENERAL PHYSIOLOGY:

- Introduction to cellular physiology
- Cell Junctions
- Transport through cell membrane and resting membrane potential Body fluids compartments
- Homeostasis

2. BIO-PHYSICAL SCIENCES

- Filtration Ultra-filtration Osmosis
- Diffusion Adsorption Hydrotropy, Colloid
- Donnan Equilibrium Tracer elements Dialysis
- Absorption Assimilation Surface tension

3. SKIN & THE INTEGUMENTARY SYSTEM

- Skin & Integumentary System
- Layers of Skin
- Function of Skin
- Sweat
- Body temperature and its regulation

4. BODY FLUID & IMMUNE MECHANISM

- Blood
- Plasma Proteins
- Red Blood Cells
- Erythropoiesis
- Haemoglobin and Iron Metabolism

- Erythrocyte Sedimentation Rate
- Packed Cell Volume and Blood Indices
- Haemolysis and Fragility of Red Blood Cells
- White Blood Cell
- Immunity
- Platelets
- Haemostasis
- Coagulation of Blood
- Blood groups
- Blood Transfusion
- Blood volume
- Reticulo-endothelial System and Tissue Macrophage Lymphatic System and Lymph
- Tissue Fluid and Oedema

5. NERVE MUSCLE PHYSIOLOGY

- Physiological properties of nerve fibres
- Nerve fibre- types, classification, function, Degeneration and regeneration of peripheral nerves
- Neuro-Muscular junction
- Physiology of Skeletal muscle
- Physiology of Cardiac muscle
- Physiology of Smooth muscle
- EMG

6. CARDIO-VASCULAR SYSTEM

- Introduction to cardiovascular system Properties of cardiac muscle
- Cardiac cycle
- General principles of circulation Heart sounds
- Regulation of cardiovascular system
- Normal and abnormal Electrocardiogram (ECG)
- Cardiac output

- Heart rate
- Arterial blood pressure
- Radial Pulse
- Regional circulation- Cerebral, Splanchnic, Capillary, Cutaneous & skeletal muscle circulation.
- Cardiovascular adjustments during exercise

7. RESPIRATORY SYSTEM AND ENVIRONMENTAL PHYSIOLOGY

- Physiological anatomy of respiratory tract
- Mechanism of respiration: Ventilation, diffusion of gases
- Transport of respiratory gases Regulation of respiration Pulmonary Function Test
- High altitude and space physiology Deep sea physiology
- Artificial respiration
- Effects of exercise on respiration

8. CENTRAL NERVOUS SYSTEM

- Introduction to nervous system Neuron
- Neuroglia
- Receptors
- Synapse
- Neurotransmitters
- Reflex
- Spinal cord
- Somato-sensory system and somato-motor system Physiology of pain
- Brain stem, Vestibular apparatus
- Cerebral cortex
- Thalamus
- Hypothalamus
- Internal capsule
- Basal ganglia
- Limbic system

- Cerebellum Posture and equilibrium
- Reticular formation
- Proprioceptors
- Higher intellectual function Electroencephalogram (EEG)
- Physiology of sleep
- Cerebro-spinal fluid (CSF) Autonomic Nervous System (ANS)
- 9. ENDOCRINOLOGY
 - Introduction of endocrinology and importance of PNEI axis Hormones and hypothalamo- hypophyseal axis
 - Pituitary gland
 - Thyroid gland
 - Parathyroid
 - Endocrine functions of pancreas Adrenal cortex
 - Adrenal medulla
 - Endocrine functions of other organs

10. REPRODUCTIVE SYSTEM

- Male reproductive system-testis and its hormones; seminal vesicles, prostate gland, semen.
- Introduction to female reproductive system
- Menstrual cycle
- Ovulation
- Menopause
- Infertility
- Pregnancy and parturition Placenta
- Pregnancy tests
- Mammary glands and lactation Fertility
- Foetal circulation

11. SPECIAL SENSES

- Eye: Photochemistry of vision, Visual pathway, Pupillary reflexes, Colour vision, Errors of refraction
- Ear: Auditory pathway, Mechanism of hearing, Auditory defects

- Sensation of taste: Taste receptors, Taste pathways
- Sensation of smell: Olfactory receptors, olfactory, pathways Sensation of touch

12. DIGESTIVE SYSTEM & NUTRITION

- Introduction to digestive system
- Composition and functions of digestive juices
- Physiological anatomy of Stomach, Pancreas, Liver and Gall bladder, Small intestine, Large intestine
- Movements of gastrointestinal tract
- Gastrointestinal hormones
- Digestion and absorption of carbohydrates, proteins and lipids

13. RENAL PHYSIOLOGY

- Physiological anatomy of kidneys and urinary tract
- Fluid & electrolyte with acid base balance need to be include
- Renal circulation
- Urine formation: Renal clearance, glomerular filtration, tubular reabsorption, selective secretion, concentration of urine, acidification of urine
- Renal functions tests
- Micturition

14. BIO-CHEMISTRY THEORY

- Carbohydrates: (Chemistry, Metabolism, Glycolysis, TCA, HMP, Glycogen synthesis and degradation, Blood glucose regulation)
- Lipids: (Chemistry, Metabolism, Intestinal uptake, Fat transport, Utilization of stored fat, Activation of fatty acids, Beta oxidation and synthesis of fatty acids)
- Proteins: (Chemistry, Metabolism, Digestion of protein, Transamination, Deamination Fate of Ammonia, Urea cycle, End products of each amino acid and their entry into TCA cycle
- Enzymes: (Definition, Classification, Biological Importance, Diagnostic use, Inhibition)
- Vitamins: (Daily requirements, Dietary source, Disorders and physiological role)
- Minerals (Daily requirement, Dietary Sources, Disorders and physiological role) mineral metabolism
- Organ function tests

PRACTICAL & CLINICAL PHYSIOLOGY:-

No	Practical	Demonstration / Performance			
	Haematology				
1	Study of the Compound Microscope	Performance			
2.	Collection of Blood Samples	Performance			
3	Estimation of Haemoglobin Concentration	Performance			
4	Determination of Haematocrit	Demonstration			
5	Hemocytometry	Performance			
6	Total RBC Count	Performance			
7	Determination of RBC Indices	Demonstration			
8	Total Leucocytes Count (TLC)	Performance			
9	Preparation And Examination Of Blood Smear	Performance			
10	Differential Leucocyte Count (DLC)	Performance			
11	Absolute Eosinophil Count	Demonstration			
12	Determination of Erythrocyte Sedimentation Rate	Demonstration			
13	Determination of Blood Groups	Performance			
14	Determination of Bleeding Time and Coagulation Time	Performance			
	Biochemistry				
1	Demonstration of Uses Of Instruments Or Equipment	Demonstration			
2	Qualitative Analysis of Carbohydrates, Proteins And Lipids	Performance			
3	Normal Characteristics of Urine	Performance			
4	Abnormal Constituents of Urine	Performance			
5	Quantitative Estimation of Glucose, Total Proteins, Uric Acid in Blood	Performance			
6	Liver Function Tests	Demonstration			
7	Kidney Function Tests	Demonstration			
8	Lipid Profile	Demonstration			
9	Interpretation and Discussion of Results of Biochemical Tests	Demonstration			
	Clinical Physiology & OPD	· · ·			
1	Case Taking & Approach to pt	Performance			
2	General Concept Of Examination	Performance			

3	Examination of muscles, joints,	Performance
4	Cardio-Vascular System – Blood Pressure Recording, Radial Pulse, ECG, Clinical Examination	Performance
5	Respiratory System- Clinical Examination, Spirometry, Stethography	Performance
6	Nervous System- Clinical Examination	Performance
7	Special Senses- Clinical Examination	Performance
8	Reproductive System- Diagnosis of Pregnancy	Performance
9	Gastrointestinal System- Clinical Examination	Performance
10	OPD	Demonstration & Performance

6. TEACHING LEARNING METHODS

Different teaching-learning methods must be apply for understanding holistic and integrated way of physiology. There has to be classroom lectures, small group discussions, case discussion where case based learning (CBL) and problem based learning (PBL). In the applied physiology, Case discussion (CBL-PBL) methods are helpful for students. AV – Methods for demonstration of physiological processes will be very helpful. In process of Clinical Physiology – DOAP (Demonstration – Observation – Assistance – Performance) is very well applicable.

Practical & Clinics are the best medium to demonstrate all physiological processes in objective ways. They help us to understand and explain the physiological signs. Haematological & Biochemistry practical are done in laboratory, where one can apply the DOAP (Demonstration – Observation – Assistance – Performance) & OSPE (Objective Structured Practical Examination) methods. All this should be recorded in the journal.

In the clinics / OPD / IPD / Bed side there shall be exposure of Clinical & Applied Physiology. These can be demonstrated by DOAP (Demonstration – Observation – Assistance – Performance) & OSCE (Objective Structured Clinical Examination) methods. These methods are more objective, and t will help students to develop the attitude as clinicians. In these type of exposure students has to observe the teachers or consultants and able to corelate what they have learned in clinical physiology classes. They do not have to examine the patient by themselves but only observe the teachers. They can keep the record of all physiological function which are disturbed. Other Innovative methods include preparation of charts and models.

Page **13** of **99**